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Purpose. Present study was undertaken to elucidate the mechanism of cellular responses to D,L-
sulforaphane (SFN), a highly promising cancer chemopreventive agent.
Methods. Mitochondrial DNA deficient Rho-0 variants of LNCaP and PC-3 cells were generated by
culture in the presence of ethidium bromide. Apoptosis was assessed by analysis of cytoplasmic histone-
associated DNA fragmentation and activation of caspase-3. Immunoblotting was performed to determine
the expression of apoptosis- and cell cycle-regulating proteins. Generation of reactive oxygen species
(ROS), mitochondrial membrane potential (MMP), and cell cycle distribution were measured by flow
cytometry.
Results. The Rho-0 variants of LNCaP and PC-3 cells were significantly more resistant to SFN-induced
ROS generation, apoptotic DNA fragmentation, disruption of MMP, cytosolic release of cytochrome c,
and G2/M phase cell cycle arrest compared with corresponding wild-type cells. SFN-induced autophagy,
which serves to protect against apoptotic cell death in PC-3 and LNCaP cells, was also partially but
markedly suppressed in Rho-0 variants compared with wild-type cells. SFN statistically significantly
inhibited activities of mitochondrial respiratory chain enzymes in LNCaP and PC-3 cells.
Conclusion. These results indicate, for the first time, that mitochondria-derived ROS serve to initiate
diverse cellular responses to SFN exposure in human prostate cancer cells.
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INTRODUCTION

Epidemiological data continues to lend support to the
idea that dietary intake of cruciferous vegetables may lower

the risk of different types of malignancies including cancer of
the prostate (1–4). Anticarcinogenic effect of cruciferous
vegetables is attributed to organic isothiocyanates (ITCs),
which are released upon processing (cutting and chewing) of
these vegetables due to myrosinase-mediated hydrolysis of
corresponding glucosinolates (5,6). Broccoli is a rather rich
source of the ITC compound (−)-1-isothiocyanato-(4R)-
(methylsulfinyl)-butane (L-SFN), which together with its
synthetic racemic analogue D,L-sulforaphane (SFN) has
received particular attention due to remarkable anticancer
properties. For example, L-SFN and SFN are equipotent
inducers of phase 2 drug metabolizing enzyme quinone
reductase in Hepa1c1c7 murine hepatoma cells (7). Exposure
of prostate cancer cells to L-SFN resulted in transcriptional
up-regulation of γ-glutamylcysteine synthetase light subunit
and glutathione transferases (8). The L-SFN or synthetic SFN
has been shown to afford significant protection against 9,10-
dimethyl-1,2-benzanthracene-induced mammary carcinogen-
esis in rats, azoxymethane-induced colonic aberrant crypt foci
in rats, and benzo[a]pyrene-induced forestomach cancer in
mice (9–11). Dietary feeding of SFN inhibited malignant
progression of lung adenomas induced by tobacco carcino-
gens in A/J mice (12).

More recent studies including those from our laboratory
have documented novel cellular responses to SFN exposure
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in cultured human cancer cells, including G2/M phase cell
cycle arrest, induction of apoptosis and autophagy, inhibition
of histone deacetylase, protein binding, and sensitization of
cells to TRAIL-induced apoptosis (13–25). The SFN-mediated
signal transduction pathways culminating in growth arrest
and apoptosis induction have been extensively studied in
human prostate cancer cells (15–17,19–21,25). For example,
we have shown previously that the SFN-induced apoptosis is
selective towards prostate cancer cells and correlates with
generation of reactive oxygen species (ROS) (18,19). The
SFN-induced apoptosis in prostate cancer cells was accompa-
nied by depletion of intracellular glutathione levels and
blunted by antioxidants (19). Pretreatment of prostate cancer
cells with antioxidants including N-acetylcysteine and a
combined mimetic of superoxide dismutase and catalase
(EUK134) as well as adenovirus-mediated transduction of
catalase conferred significant protection against SFN-induced
ROS generation, apoptotic DNA fragmentation, cytosolic
release of cytochrome c, collapse of mitochondrial membrane
potential, and caspase activation (19). These results pointed
towards critical role of ROS in signal transduction by SFN
(19). We have also shown previously that oral gavage of SFN
significantly retards growth of PC-3 human prostate cancer
xenografts in nude mice and inhibits prostate carcinogenesis
and pulmonary metastasis in a transgenic mouse model of
prostate cancer (26,27).

Despite these advances, however, the mechanism by
which SFN causes ROS production remains elusive. In the
present study we generated mitochondrial DNA deficient
Rho-0 variants of LNCaP and PC-3 cells to determine
possible involvement of mitochondria in anticancer signal
transduction by SFN. We now demonstrate, for the first time,
that cellular responses to SFN exposure (cell cycle arrest,
apoptosis induction and autophagy) in human prostate
cancer cells are initiated by the mitochondria-derived ROS
due to inhibition of mitochondrial respiratory chain (MRC)
enzymes.

MATERIALS AND METHODS

Reagents

SFN (purity >99%) was synthesized as described by
Conaway et al. (12). SFN was stored at −20°C and found to be
stable for at least 4 months as judged by high-performance
liquid chromatography (12). Reagents for cell culture includ-
ing F-12K Nutrient Mixture, RPMI 1640 medium, penicillin
and streptomycin antibiotic mixture, and serum were pur-
chased from GIBCO (Grand Island, NY). Hydroethidine
(HE), 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA), and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
benzimidazolylcarbocyanine iodide (JC-1) were purchased
from Molecular Probes (Eugene, OR) whereas 4′,6-diami-
dino-2-phenylindole (DAPI) was obtained from Sigma (St.
Louis, MO). The ELISA kit for quantitation of cytoplasmic
histone-associated DNA fragmentation was from Roche
Diagnostics (Mannheim, Germany). The antibody against
cytochrome c oxidase subunit IV (COXIV) was from
Molecular Probes; the anti-cytochrome c antibody was from
BD Pharmingen (Palo Alto, CA); antibodies against Bax,
Bak, cyclinB1, Tyr15 phosphorylated cyclin-dependent kinase

1 (cdk1), and Ser10 phosphorylated histone H3 were from
Santa Cruz Biotechnology (Santa Cruz, CA); anti-catalase
antibody was from Calbiochem (Gibbstown, NJ); antibody
against microtubule-associated protein 1 light chain 3 (LC3)
was from Cell Signaling (Danvers, MA); and anti-Bcl-2
antibody was from DAKO Cytomation (Carpinteria, CA).

Cell Lines and Generation of Rho-0 Variants

Monolayer cultures of PC-3 cells weremaintained in F-12K
Nutrient Mixture supplemented with 7% non-heat inactivated
fetal bovine serum and antibiotics. The LNCaP cells were
cultured in RPMI 1640 supplemented with 10% fetal bovine
serum, 2.4 mg/mL glucose, 1 mmol/L sodium pyruvate, and
antibiotics. Both cell lines were maintained at 37°C in an
atmosphere of 5% CO2 and 95% air. The Rho-0 variants of
LNCaP and PC-3 cells were generated and maintained as
described previously by King and Attadi (28) with some
modifications. Briefly, the cells were cultured in complete
medium supplemented with 1 mmol/L sodium pyruvate,
1 mmol/L uridine and 2.5 µmol/L ethidium bromide over a
period of 7 weeks. Cells cultured in parallel in medium without
ethidium bromide were used as controls (wild-type cells).

Immunocytochemical Analysis for COXIV

Wild-type and Rho-0 variants of LNCaP and PC-3 cells
(1×105) were plated on coverslips and allowed to attach by
overnight incubation. Cells were first treated with 200 nmol/L
MitoTracker Red at 37°C for 30 min to stain mitochondria.
After washing with PBS, the cells were fixed with 2%
paraformaldehyde overnight at 4°C and permeabilized using
0.1% Triton X-100 in PBS for 10 min. The cells were washed
with PBS, blocked with 0.5% bovine serum albumin (BSA) in
PBS for 1 h, and incubated with anti-COXIV antibody
overnight at 4°C. The cells were then washed with PBS,
incubated with Alexa Fluor 488-conjugated secondary
antibody (1:1,000 dilution, Molecular Probes) for 1 h at
room temperature. Subsequently, the cells were washed with
PBS and treated with DAPI (10 ng/mL) for 5 min at room
temperature to stain nuclear DNA. The cells were washed
twice with PBS and examined under a Leica fluorescence
microscope at ×40 objective lens magnification.

Immunoblotting

The cells were treated with 20 or 40 μmol/L SFN and
lysed as described by us previously (29). The mitochondria-
free cytosolic fraction for immunoblotting of cytochrome c
was prepared as described by us previously (25). The lysate
proteins were resolved by 6–12.5% sodium dodecyl sulfate
polyacrylamide gel electrophoresis and transferred onto
membrane. Immunoblotting was performed as described by
us previously (21,25,29).

Measurement of MRC Enzyme Activities

Cells were plated at a density of 1×106 in 100-mm culture
dishes, allowed to attach by overnight incubation, and treated
with DMSO (control) or different concentrations of SFN for
6 h at 37°C. Cells were then harvested by scraping, washed
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with PBS, and lysed. Protein concentration was determined
using the Bradford reagent. Activity of complex I-linked
NADH-ubiquinone oxidoreductase, complex II-linked
succinate-ubiquinone oxidoreductase, and complex III-
linked ubiquinol cytochrome c reductase was determined as
described by us previously (30).

Measurement of ROS Generation

Intracellular ROS generation in DMSO-treated control
and SFN-treated cells (20 µmol/L SFN for 4 h) was measured
by flow cytometry following staining with HE and H2DCFDA
as described by us previously (19). The 2′,7′-dichlorofluor-
escein (DCF) fluorescence was measured using a Coulter
Epics XL Flow Cytometer.

Determination of Apoptotic DNA Fragmentation, Cell
Viability, and Caspase-3 Activation

Apoptosis induction by SFN was assessed by analysis of
cytoplasmic histone-associated DNA fragmentation using a kit
from Roche Diagnostics according to the manufacturer’s
instructions. Activation of caspase-3 was determined by flow

cytometry using a kit from Cell Signaling. The cells were treated
with DMSO (control) or SFN for specified time period, and
processed for flow cytometric analysis of caspase-3 activation
according to the manufacturer’s instructions. The effect of SFN
treatment on cell viability was determined by trypan blue dye
exclusion assay as described by us previously (31).

Measurement of Mitochondrial Membrane Potential (MMP)
and Cell Cycle Distribution

MMP was measured using a potential-sensitive dye JC-1
(32). Stock solution of JC-1 (1 mg/mL) was prepared in DMSO
and freshly diluted with the assay buffer. Briefly, cells (2×105)
were plated in T25 flasks, allowed to attach by overnight
incubation, exposed to desired concentrations of SFN for
specified time periods, and collected by trypsinization. The cells
were incubated with medium containing JC-1 (10 µg/mL) for
15 min at 37°C. The cells were washed, re-suspended in 0.5 mL
assay buffer, and analyzed using a Coulter Epics XL Flow
Cytometer. Mitochondrial uncoupler carbonylcyanide 4-
(trifluoromethoxy)phenylhydrazone (FCCP; 25 µM) was used
as a positive control. The effect of SFN treatment on cell cycle
distribution was determined by flow cytometry following staining
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Fig. 1. Characterization of Rho-0 variants of LNCaP and PC-3 cells. A Fluorescence
microscopic analysis of cytochrome c oxidase subunit IV (COXIV) expression in wild-type
LNCaP and PC-3 cells and their Rho-0 variants. The staining for mitochondria (MitoTracker
red), COXIV, and nuclei (DAPI) are indicated by red, green and blue fluorescence, respectively.B
Immunoblotting for COXIVusing lysates fromwild-type LNCaP and PC-3 cells and their Rho-0
variants.CActivity of complex I using lysate proteins from wild-type and Rho-0 LNCaP cells.D
Activity of complex III using lysate proteins fromwild-type LNCaP and PC-3 cells and their Rho-
0 variants. Results are mean ± SE of three determinations. *Significantly different (P<0.05)
compared with wild-type cells by t-test.
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the cells with propidium iodide essentially as described by us
previously (15). Cells in different phases of the cell cycle were
computed for DMSO-treated control and SFN-treated cultures.

Detection of Autophagy

Autophagy induction by SFN was assessed by (a)
analysis of acidic vesicular organelles (AVOs) by fluorescence
microscopy following staining with lysosomotropic agent
acridine orange, (b) immunoblotting for cleavage of LC3,
and (c) immunofluorescence microscopy to determine re-
cruitment of LC3 to autophagosomes essentially as described
by us previously (21).

Statistical Analysis

One-way ANOVA or t-test was used to determine
statistical significance of difference in measured variables
between control and treated groups. Difference was consid-
ered significant at P<0.05.

RESULTS

Rho-0 Variants of LNCaP and PC-3 Cells were Resistant
to ROS Generation and Apoptosis Induction by SFN

To determine role of mitochondria in ROS generation by
SFN, we generated Rho-0 variants of LNCaP and PC-3 cells
by culture in the presence of ethidium bromide. The survival
of Rho-0 cells is dependent on ATP derived from anaerobic
glycolysis but these cells have functional F1-ATPase (33–35).
The Rho-0 cells are unable to generate ROS from MRC.
Initially, we carried out experiments to confirm Rho-0
phenotype of the variant LNCaP and PC-3 cells. As can be
seen in Fig. 1A, the mitochondria in wild-type cells were
brightly stained with MitoTracker red and COXIV, which is
encoded by the mitochondrial DNA, as revealed by fluores-
cence microscopy. The intensity of the MitoTracker red and
COXIV staining was much weaker in Rho-0 cells than in the
wild-type cells (Fig. 1A). Consistent with these results, immu-
noblotting revealed expression of COXIV in wild-type LNCaP
and PC-3 cells but not in their Rho-0 variants (Fig. 1B). In
addition, the Rho-0 variants of LNCaP and PC-3 cells exhibited
significantly diminished activities of complex I (Fig. 1C) and
complex III (Fig. 1D) of theMRC. These results confirmed Rho-
0 phenotype of the variant LNCaP and PC-3 cells.

Next, we proceeded to determine the effect of SFN
treatment on ROS generation and apoptosis induction using
wild-type LNCaP and PC-3 cells and their Rho-0 variants. As
expected, exposure of wild-type LNCaP and PC-3 cells to
20 μmol/L SFN for 4 h resulted in ROS generation as evidenced
by a statistically significant increase in DCF fluorescence over
DMSO-treated control (Fig. 2A). The SFN-mediated increase
in DCF fluorescence was not observed in the Rho-0 variants of
LNCaP and PC-3 cells (Fig. 2A). The SFN treatment (20 or
40 μmol/L, 24 h) caused significant increase in cytoplasmic
histone-associated DNA fragmentation in the wild-type LNCaP
and PC-3 cells compared with corresponding DMSO-treated
controls (Fig. 2B). The SFN-mediated cytoplasmic histone-
associated DNA fragmentation was significantly lower in Rho-0
variants of LNCaP and PC-3 cells compared with corresponding

wild-type cells (Fig. 2B). TheRho-0 cells were significantlymore
resistant to SFN-mediated suppression of cell viability compared
with the wild-type cells (Fig. 2C). These results clearly indicated
that SFN-mediated apoptosis induction and growth inhibition in
both LNCaP and PC-3 cells are initiated by the mitochondria-
derived ROS.

ROS Acted Upstream of Caspase-3 Activation and MMP
Collapse in SFN-Induced Apoptosis

Next, we determined the effect of SFN treatment on
caspase-3 activation, MMP, and cytochrome c release using
wild-type PC-3 cells and its Rho-0 variant. Twenty-four hour
exposure of wild-type PC-3 cells to 20 μmol/L SFN resulted in
about ten-fold enrichment of active caspase-3 (Fig. 3A). The
SFN-mediated activation of caspase-3 was only two-fold
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Fig. 2. Rho-0 variants of LNCaP and PC-3 cells are significantly more
resistant towards ROS generation and apoptosis induction by SFN
compared with wild-type cells. A DCF fluorescence (a measure of ROS
generation) in wild-type LNCaP and PC-3 cells and their Rho-0 variants
following 4 h treatment with DMSO or 20 μmol/L SFN. Results are
expressed as percentage of DCF positive cells. B Analysis of cytoplasmic
histone-associated DNA fragmentation in wild-type LNCaP and PC-3
cells and their Rho-0 variants following 24 h treatment with DMSO or the
indicated concentrations of SFN. Results are expressed as enrichment
factor relative to DMSO-treated control for both wild-type and Rho-0
cells.C Trypan blue dye exclusion assay to assess cell viability in wild-type
LNCaP and PC-3 cells and their Rho-0 variants following 24 h treatment
with DMSO or SFN. Results are mean ± SE (n=3). Significantly different
(P<0.05) compared with a corresponding DMSO-treated control and b
SFN-treated wild-type cells by one-way ANOVA followed by Bonferro-
ni’s test. Each experiment was performed at least twice with triplicate
measurements in each experiment. The results were consistent and
representative data from a single experiment are shown.
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higher over DMSO-treated control in Rho-0 variant of PC-3
cells (Fig. 3A). Next, we determined effect of SFN treatment
on MMP using JC-1 dye. The collapse of the MMP is
characterized by green fluorescence due to accumulation of
monomeric JC-1 in the cytosol (32). The SFN treatment
(20 μmol/L, 4 h) caused a marked increase in monomeric JC-
1-associated green fluorescence in wild-type PC-3 cells, which
was nearly completely inhibited in the Rho-0 variant
(Fig. 3B). Treatment with 20 μmol/L SFN for 24 h resulted
in cytosolic release of cytochrome c in wild-type PC-3 cells
but not in its Rho-0 variant (Fig. 3C). Collectively, these
results indicated that ROS acted upstream of disruption of
MMP and caspase-3 activation in SFN-induced apoptosis.

SFN-Mediated Changes in Levels of Bcl-2 Family Proteins

We addressed the question of whether resistance of Rho-0
cells to SFN-mediated apoptosis was due to lack of change in ratio
of proapoptotic to anti-apoptotic Bcl-2 family protein levels. As
can be seen in Fig. 3C, SFN treatment (20 μmol/L, 24 h) caused
marked induction of Bax protein level and modest decline in the
levels of Bcl-2 protein inwild-type PC-3 cells. These changeswere
less apparent in the Rho-0 variant of PC-3 cells (Fig. 3C).
Interestingly, the stress caused by depletion of mitochondrial
DNA inRho-0 PC-3 variant also resulted in up-regulation of both
Bax and Bcl-2, but not Bak, in comparison with wild-type cells
(Fig. 3C). These results provided further evidence that mitochon-

dria-derived ROS acted upstream of Bax induction in regulation
of SFN-induced apoptotic cell death.

Critical Role of ROS in SFN-Induced G2/M Phase Cell Cycle
Arrest

We designed experiments to test a hypothesis that the
initial signal for SFN-mediated G2/M phase cell cycle arrest
stems from ROS production. As can be seen in Fig. 4A, 24 h
exposure of wild-type LNCaP cells to 20 μmol/L SFN resulted
in enrichment of G2/M fraction over DMSO-treated control.
The SFN-mediated G2/M phase cell cycle arrest was not
evident in the Rho-0 variant of LNCaP cells (Fig. 4A).
Likewise, the Rho-0 variant of PC-3 cells was significantly
more resistant to SFN-mediated G2/M phase cell cycle arrest
compared with wild-type PC-3 cells (results not shown). We
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orange) in wild-type PC-3 cells and its Rho-0 variant following 9 h treatment with DMSO or 40 μmol/L SFN
(magnification ×100). Each experiment was performed at least twice and the results were comparable.
Representative data from a single experiment are shown.
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performed immunoblotting for key proteins involved in
regulation of G2/M transition to confirm resistance of Rho-0
cells towards SFN-induced cell cycle arrest. As shown in
Fig. 4B, the SFN treatment (20 μmol/L, 24 h) resulted in
upregulation of cyclinB1 and increased Tyr15 phosphorylation
(inactivation) of cdk1 in wild-type PC-3 cells, which was not
observed in the Rho-0 variant (Fig. 4B). The SFN treatment
also increased Ser10 phosphorylation (a marker of mitotic
cells) of histone H3 in wild-type PC-3 cells but not in its Rho-0
variant (Fig. 4B). The immunoblotting for cell cycle regulatory
proteins also suggested that Rho-0 cells were probably growth
arrested in G2 and mitotic phases as evidenced by increased
phosphorylations of cdk1 and histone H3, respectively, in
DMSO-treated Rho-0 PC-3 cells (Fig. 4B). Collectively, these
results indicated that (a) the mitochondrial stress resulting
from depletion of mitochondrial DNA caused growth arrest
even in the absence of SFN treatment, and (b) the signal
transduction for SFN-induced G2/M phase cell cycle arrest was
also initiated by the mitochondria-derived ROS.

SFN-Induced Autophagy Was Partially Inhibited in Rho-0
Cells

Autophagy induction is another novel cellular response to
SFN exposure in cultured prostate cancer cells and serves to
protect against apoptotic cell death caused by SFN treatment
(21). A very recent study has implicated ROS and catalase
degradation in autophagy regulation (36). We therefore raised
the question of whether autophagic response to SFN in prostate
cancer cells was also linked to ROS generation. As shown in
Fig. 5A, SFN treatment had minimal effect on catalase protein
level in wild-type LNCaP and PC-3 cells as well as in their Rho-0
variants. We determined autophagic response to SFN in wild-
type LNCaP and PC-3 cells and their Rho-0 variants by analysis
of processing and recruitment of LC3 and formation of AVOs,
which are hallmarks of autophagy (37–41). The LC3 protein
(18 kDa) is cleaved by autophagic stimuli to a 16 kDa
intermediate (LC3-II) that localizes to the autophagosomes
(37). As can be seen in Fig. 5A, SFN treatment resulted in
cleavage of LC3 in both wild-type LNCaP and PC-3 cells. The
SFN-mediated cleavage of LC3 was partially but markedly
suppressed in Rho-0 variants of both cell lines (Fig. 5A).
Recruitment of LC3-II to the autophagosomes is characterized
by punctate pattern of its localization (21,37,38). The DMSO-
treated (9 h exposure) wild-type PC-3 (Fig. 5B) and LNCaP cells
(results not shown) exhibited diffuse and weak LC3-associated
green fluorescence. On the other hand, the wild-type PC-3 cells
(Fig. 5B) and LNCaP cells (results not shown) treated for 9 h
with 40 μmol/L SFN exhibited punctate pattern of LC3
immunostaining. The SFN-induced recruitment of LC3 to
autophagosomes was much less pronounced in the Rho-0
variants of PC-3 (Fig. 5C) and LNCaP cells (results not shown).
In agreement with these results, the SFN-induced (40 μmol/L,
9 h) formation of AVOs was relatively more pronounced in the
wild-type PC-3 (Fig. 5D) and LNCaP cells (results not shown)
than in their Rho-0 variants. The SFN-mediated recruitment of
LC3 to autophagosomes in PC-3 cells stably transfected with
plasmid encoding GFP-LC3 (21) was also significantly inhibited
by pre-treatment with N-acetylcysteine (supplemental Fig. S1).
Collectively these results indicated that SFN-induced autophagy
was partially dependent on ROS production.

SFN Treatment Inhibited Activities of MRC

To identify the target of SFN-mediated ROS generation,
we determined its effect on activities of MRC enzymes using
LNCaP and PC-3 cells. SFN treatment (6 h) resulted in
significant inhibition of complex-I, II, and III activities in both
LNCaP (Fig. 6A) and PC-3 cell lines especially at 40–
100 μmol/L SFN (Fig. 6B). However, complex II was most
sensitive to inhibition by SFN in both cell lines at 40–
100 μmol/L concentrations. Nonetheless, these results indi-
cated that SFN treatment caused inhibition of MRC leading
to ROS generation in human prostate cancer cells.

DISCUSSION

Even though possible contribution of ROS in apoptotic
response to the ITC family of cancer chemopreventive agents,
including phenethyl-ITC, was suggested previously (42,43), the
mechanism of ROS generation by this class of chemopreventive
agent was not clear. The present study indicates that ROS
production in SFN-treated prostate cancer cells is mitochondria-
derived. The mitochondrial DNA deficient Rho-0 variants of
LNCaP and PC-3 cells are significantly more resistant to ROS
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Fig. 6. SFN treatment inhibited MRC activities in LNCaP and PC-3
cells. Activities of complex I-linked NADH-ubiquinone oxidoreduc-
tase, complex II-linked succinate-ubiquinone oxidoreductase, and
complex III-linked ubiquinol cytochrome c reductase in A LNCaP
cells and B PC-3 cells treated for 6 h with DMSO (control) or the
indicated concentrations of SFN. Results are mean ± SE (n=3).
*Significantly different (P<0.05) compared with control by one-way
ANOVA followed by Dunnett’s test. Each assay was performed at
least twice using independently prepared cell extracts.
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generation, growth suppression, and apoptosis induction by
SFN compared with wild-type cells. Moreover, SFN treatment
causes significant inhibition of MRC complex activities in both
LNCaP and PC-3 cells. While further studies are needed to
determine the precisemechanism of SFN-mediated inhibition of
MRC enzymes, it is plausible that SFN covalently modifies
critical subunit(s) of MRC complexes. This possibility is
meritorious because ITC/SFN-mediated covalent modification
of cellular proteins has been documented previously (24,44).

ROS function upstream of cytochrome c release and
caspase activation by certain apoptotic stimuli such as hyper-
oxia (45). At the same time, generation of ROS downstream
of the release of cytochrome c has also been described in
some cellular models of mitochondria-mediated apoptosis
(46,47). The present study reveals that ROS act upstream of
mitochondrial changes in SFN-induced apoptosis because
collapse of MMP and cytosolic release of cytochrome c are
observed in wild-type cells but not in Rho-0 variants.
Consistent with these results, the Rho-0 variant of PC-3 cell
line is also resistant to SFN-mediated activation of caspase-3.
Previous studies have shown that SFN-induced apoptosis
correlates with induction of multidomain proapoptotic pro-
teins Bax and Bak and down-regulation of anti-apoptotic
protein Bcl-2 (18,19,25,26). We found that SFN-mediated
induction of Bax, but not Bcl-2 down-regulation, is also
dependent on ROS generation.

The present study shows that the G2/M phase cell cycle
arrest caused by SFN exposure is initiated by mitochondria-
derived ROS. The SFN-mediated G2/M phase cell cycle arrest is
observed in wild-type LNCaP cells but not in its Rho-0 variant.
The Rho-0 variant of PC-3 cell line is also significantly more
resistant to SFN-induced G2/M phase cell cycle arrest compared
with wild-type cells (results not shown). Eukaryotic cell cycle
progression involves sequential activation of cdks whose activa-
tion is dependent upon their association with regulatory cyclins
(48).A complex formed by the association of cdk1 (also known as
p34cdc2) with cyclinB1 plays a major role in regulation of G2/M
transition (48). Activity of cdk1/cyclinB1 kinase complex is
negatively regulated by reversible phosphorylations at Thr14
and Tyr15 of cdk1 (48). The SFN-mediated inhibition of G2/M
progression in wild-type prostate cancer cells is associated with an
increase inTyr15 phosphorylation of cdk1 suggesting inhibition of
the cdk1/cyclinB1 kinase complex. Because SFN treatment
causes an increase in protein level of cyclinB1 in wild-type cells,
it is reasonable to conclude that the cell cycle arrest in our model
is unlikely to be due to inhibition of complex formation between
cdk1 and cyclinB1.Our data also suggest that theRho-0 cells with
mitochondrial stress exhibit growth arrest even in the absence of
SFN treatment as evidenced by hyperphosphorylation of cdk1 at
Tyr15 and accumulation of mitotic marker Ser-10 phosphorylated
histone H3.

Recent studies have implicated ROS in autophagic
response to various stimuli including chemical inhibitors of
MRC and caspase inhibitor zVAD (36,49). For example,
autophagic cell death resulting from treatment of murine
L929 cell line with caspase inhibitor zVAD was shown to be
associated with ROS generation and degradation of catalase
(36). Interestingly, the ROS generation and catalase degra-
dation occurred down-stream of zVAD-mediated autophagy
in L929 cells (36). The results of the present study indicate
that SFN-mediated autophagy, which serves to protect against

SFN-induced apoptosis at least in LNCaP and PC-3 cells (21),
is partially dependent upon ROS. The SFN-mediated autophagy
is relatively more pronounced in the wild-type LNCaP
and PC-3 cells compared with their Rho-0 variants as judged
by analysis of LC3 cleavage and recruitment and formation
of AVOs. Thus, we conclude that ROS serve to partially
contribute to autophagy induction by SFN in prostate cancer
cells.

In conclusion the present study offers a mechanistic
model for cellular response to SFN in human prostate cancer
cells involving ROS, which are mitochondria-derived and
serve to function upstream of apoptosis, G2/M phase cell
cycle arrest, and autophagy. The translational implication of
these findings is that cancer chemopreventive effect of SFN
may be attenuated in the presence of anti-oxidants.
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